refined solvable presentations for polycyclic groups
نویسندگان
چکیده
we describe a new type of presentation that, when consistent, describes a polycyclic group. this presentation is obtained by refining a series of normal subgroups with abelian sections. these presentations can be described effectively in computer-algebra-systems like {scshape gap} or {scshape magma}. we study these presentations and, in particular, we obtain consistency criteria for them. the consistency implementation demonstrates that there are situations where the new method is faster than the existing methods for polycyclic groups.
منابع مشابه
Refined Factorizations of Solvable Potentials
A generalization of the factorization technique is shown to be a powerful algebraic tool to discover further properties of a class of integrable systems in Quantum Mechanics. The method is applied in the study of radial oscillator, Morse and Coulomb potentials to obtain a wide set of raising and lowering operators, and to show clearly the connection that link these systems.
متن کاملFreiman's theorem for solvable groups
Freiman’s theorem asserts, roughly speaking, if that a finite set in a torsion-free abelian group has small doubling, then it can be efficiently contained in (or controlled by) a generalised arithmetic progression. This was generalised by Green and Ruzsa to arbitrary abelian groups, where the controlling object is now a coset progression. We extend these results further to solvable groups of bo...
متن کاملGeometric Presentations for Thompson’s Groups
Starting from the observation that Thompson’s groups F and V are the geometry groups respectively of associativity, and of associativity together with commutativity, we deduce new presentations of these groups. These presentations naturally lead to introducing a new subgroup S• of V and a torsion free extension B• of S•. We prove that S• and B• are the geometry groups of associativity together ...
متن کاملCharacterization of Solvable Groups and Solvable radical
We give a survey of new characterizations of finite solvable groups and the solvable radical of an arbitrary finite group which were obtained over the past decade. We also discuss generalizations of these results to some classes of infinite groups and their analogues for Lie algebras. Some open problems are discussed as well.
متن کاملShort Presentations for Finite Groups
We conjecture that every nite group G has a short presentation (in terms of generators and relations) in the sense that the total length of the relations is (log jGj) O(1). We show that it suuces to prove this conjecture for simple groups. Motivated by applications in computational complexity theory, we conjecture that for nite simple groups, such a short presentation is computable in polynomia...
متن کاملPresentations for Subsemigroups of Groups
This thesis studies subsemigroups of groups from three perspectives: automatic structures, ordinary semigroup presentations, and Malcev presentaions. [A Malcev presentation is a presentation of a special type for a semigroup that can be embedded into a group. A group-embeddable semigroup is Malcev coherent if all of its finitely generated subsemigroups admit finite Malcev presentations.] The th...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
international journal of group theoryناشر: university of isfahan
ISSN 2251-7650
دوره 1
شماره 2 2011
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023